Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1.
نویسندگان
چکیده
Manganese (Mn) deficiency is an important plant nutritional disorder in many parts of the world. Barley (Hordeum vulgare) genotypes differ considerably in their ability to grow in soils with low Mn(2+) availability. Differential genotypic Mn efficiency can be attributed to differences in Mn(2+) uptake kinetics in the low nanomolar concentration range. However, the molecular basis for these differences has not yet been clarified. We present here the identification and characterization of the first barley gene encoding a plasma membrane-localized metal transport protein able to transport Mn(2+). The gene is designated HvIRT1 (for IRON-REGULATED TRANSPORTER1) because it belongs to the ZIP gene family and has a high similarity to rice (Oryza sativa) OsIRT1. A novel yeast uptake assay based on inductively coupled plasma-mass spectrometry analysis of 31 different metal and metalloid ions showed that the HvIRT1 protein, in addition to Mn(2+), also transported Fe(2+)/Fe(3+), Zn(2+), and Cd(2+). Both Mn and iron deficiency induced an up-regulation of HvIRT1 in two barley genotypes differing in Mn efficiency, but the expression levels in all cases were highest (up to 40%) in the Mn-efficient genotype. The higher expression of HvIRT1 correlated with an increased Mn(2+) uptake rate. We conclude that HvIRT1 is an important component controlling Mn(2+) uptake in barley roots and contributes to genotypic differences in Mn(2+) uptake kinetics.
منابع مشابه
DISSOLUTION KINETICS OF MANGANESE DIOXIDE ORE IN SULFURIC ACID IN THE PRESENCE OF FERROUS ION
Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the st...
متن کاملDirect Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter.
Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating the...
متن کاملZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties.
Cadmium is a dangerous metal distributed widely in the environment. Members of our laboratory recently identified the ZIP8 transporter protein, encoded by the mouse Slc39a8 gene, to be responsible for genetic differences in response to cadmium damage of the testis. Stable retroviral infection of the ZIP8 cDNA in mouse fetal fibroblast cultures (rvZIP8 cells) leads to as much as a 10-fold increa...
متن کاملCharacterization of Copper-Manganese Oxide Catalysts and Their Precursors: Effect of Precipitate Aging upon the Structure and Morphology of Precursors and Catalysts
Copper-manganese oxide catalysts are prepared with an atomic ratio of Cu/Mn=2/1 using a coprecipitation procedure under air atmosphere. The time of aging, i.e., the time that precipitate remains in contact with the precipitating medium, has been varied from 0 (for unaged precursor) to 300 minutes and the effect of precipitate aging time in each atmosphere upon the structure and morphology of di...
متن کاملA novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal-phytosiderophore complexes.
Recent advances in our understanding of how graminaceous plants take up insoluble forms of iron from the rhizosphere and mobilize them in plant tissues are primarily based on the identification of various transporters that are specific to metal-phytosiderophore (PS) complexes containing mugineic acid and deoxymugineic acid. Barley (Hordeum vulgare L.) yellow stripe 1 (HvYS1) is a metal-PS trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 148 1 شماره
صفحات -
تاریخ انتشار 2008